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Abstract: They appear often situations in a system’s operation characterized by a degree of vagueness and/or 
uncertainty. In the present paper we use principles of fuzzy logic to develop a general model representing such 
kind of situations. We also present 3 alternative methods for measuring a fuzzy system’s effectiveness. These 
methods include the measurement of the system’s total possibilistic uncertainty, the Shannon’s entropy properly 
modified for use in a fuzzy environment and the “centroid” method in which the coordinates of the center of 
mass of the graph of the membership function involved provide an alternative measure of the system’s 
performance  An application of the above results is also developed concerning the Problem Solving process and 
two classroom experiments are presented illustrating the use of our results in practice. 
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1. Introduction: Systems’ Modelling and 
Fuzzy Logic   
A system is a set of interacting or interdependent 
components forming an integrated whole. A system 
comprises multiple views such as planning, analysis, 
design, implementation, deployment, structure, 
behavior, input and output data, etc. As an 
interdisciplinary and multi- perspective domain 
systems’ theory brings together principles and 
concepts from ontology, philosophy of science, 
information and computer science, mathematics, as 
well as physics, biology, engineering, social and 
cognitive sciences, management and economics, 
strategic thinking, fuzziness and uncertainty, etc. 
Thus, it serves as a bridge for an interdisciplinary 
dialogue between autonomous areas of study. The 
emphasis with systems’ theory shifts from parts to 
the organization of parts, recognizing that 
interactions of the parts are not static and constant, 
but dynamic processes. 
      Most systems share common characteristics 
including structure, behavior, interconnectivity (the 
various parts of a system have functional and 
structural relations to each other), sets of functions, 
etc.  We scope a system by defining its boundary; this 

means choosing which entities are inside the system 
and which are outside, part of the environment.  
      The systems’ modelling is a basic principle in 
engineering, in natural and in social sciences. When 
we face a problem concerning a system’s operation 
(e.g. maximizing the productivity of an organization, 
minimizing the functional costs of a company, etc) a 
model is required to describe and represent the 
system’s multiple views. The model is a simplified 
representation of the basic characteristics of the real 
system including only its entities and features under 
concern. In this sense, no model of a complex system 
could include all features and/or all entities belonging 
to the system. In fact, in this way the model’s 
structure could become very complicated and 
therefore its use in practice could be very difficult 
and sometimes impossible. Therefore the 
construction of the model usually involves a deep 
abstracting process on identifying the system’s 
dominant variables and the relationships governing 
them. The resulting structure of this action is known 
as the assumed real system (see Figure 1). The model, 
being an abstraction of the assumed real system, 
identifies and simplifies the relationships among 
these variables in a form amenable to analysis. 
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Figure 1: A graphical representation of the modelling process  
 
A system can be viewed as a bounded transformation, 
i.e. as a process or a collection of processes that 
transforms inputs into outputs with the very broad 
meaning of the concept. For example, an output of a 
passengers’ bus is the movement of people from 
departure to destination.  
      Many of these processes are frequently 
characterized by a degree of vagueness and/or 
uncertainty. For example, during the processes of 
learning, of reasoning, of problem-solving, of 
modelling, etc, the human cognition utilizes in 
general concepts that are inherently graded and 
therefore fuzzy. On the other hand, from the teacher’s 
point of view there usually exists an uncertainty 
about the degree of students’ success in each of the 
stages of the corresponding didactic situation.  
There used to be a tradition in science and 
engineering of turning to probability theory when one 
is faced with a problem in which uncertainty plays a 
significant role. This transition was justified when 
there were no alternative tools for dealing with the 
uncertainty. Today this is no longer the case. Fuzzy 
logic, which is based on fuzzy sets theory introduced 
by Zadeh [32] in 1965, provides a rich and 
meaningful addition to standard logic. The 
applications which may be generated from or adapted 
to fuzzy logic are wide-ranging and provide the 
opportunity for modelling under conditions which 
are inherently imprecisely defined, despite the 
concerns of classical logicians. Many systems may 
be modelled, simulated and even replicated with the 
help of fuzzy logic, not the least of which is human 
reasoning itself (e.g. [4], [8], [13], [21], [28], [31], etc) 
A real test of the effectiveness of an approach to 
uncertainty is the capability to solve problems, which 
involves different facets of uncertainty. Fuzzy logic 
has a much higher problem solving capability than 
standard probability theory. Most importantly, it 
opens the door to construction of mathematical 
solutions of computational problems which are stated 
in a natural language.  In contrast, standard 

probability theory does not have this capability, a fact 
which is one of its principal limitations.     
       Another advantage of the fuzzy logic is that, 
apart of the quantitative information, it gives also the 
opportunity of a qualitative study by searching the 
behaviour of all possible profiles of the system’s 
entities involved in the corresponding process. 
       All these gave us the impulsion to introduce 
principles of fuzzy logic to describe in a more 
effective way a system’s operation in situations 
characterized by a degree of vagueness and/or 
uncertainty.    
        For general facts on fuzzy sets and logic and on 
uncertainty theory we refer freely to the book of Klir 
and Folger [5]. 
 
2. The general fuzzy model 
Assume that we want to study the behavior of a 
system’s n entities (objects), n≥ 2, during a process 
involving vagueness and/or uncertainty. Denote by Si , 
i=1,2,3 the main stages of this process and by a, b, c, 
d, and e the linguistic labels of very low, low, 
intermediate, high and very high success respectively 
of a system’s entity in each of the Si’s.  Set  
 

U = {a, b, c, d, e}. 
 
We are going to attach to each stage Si a fuzzy subset, 
Ai of U. For this, if nia, nib, nic, nid and nie denote the 
number of entities that faced very low, low, 
intermediate,  high and very high success at stage Si 
respectively, i=1,2,3, we define the membership 
function mAi  for each x in U, as follows:  
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Then the fuzzy subset Ai of U corresponding to Si   has 
the form: 

Ai = {(x, mAi(x)):  x∈U}, i=1, 2, 3. 

In order to represent all possible profiles (overall 
states) of the system’s entities during the 
corresponding process we consider a fuzzy relation, 
say R, in U3 of the form: 

R= {(s, mR(s)): s=(x, y, z) ∈U3}. 

We assume that the stages of the process that we 
study are depended to each other. This means that the 
degree of system’s success in a certain stage depends 
upon the degree of its success in the previous stages, 
as it usually happens in practice. Under this 
hypothesis and in order to determine properly the 
membership function mR we give the following 
definition:  

Definition: A profile  s=(x, y, z), with x, y, z in U, is 
said to be well ordered if x corresponds to a degree of 
success equal or greater than y and y corresponds to 
a degree of success equal or greater than z.  
For example, (c, c, a) is a well ordered profile, while 
(b, a, c) is not.  
We define now the membership degree of a profile s 
to be 

mR(s) = m
1A (x)m

2A (y)m
3A (z) 

 
if s is well ordered, and 0 otherwise.  

In fact, if for example the profile (b, a, c) possessed a 
nonzero membership degree, how it could be 
possible for an object that has failed during the 
middle stage, to perform satisfactorily at the next 
stage?  
Next, for reasons of brevity, we shall write ms instead 
of mR(s).  
Then the probability ps of the profile s is defined in a 
way analogous to crisp data, i.e.  by 

Ps =  
3

s

s
s U

m
m

∈
∑

   . 

 
We define also the possibility rs of s by   

rs=
}max{ s

s

m
m , 

where max{ms} denotes the maximal value of ms , for 
all s in U3. In other words the possibility of s 
expresses the “relative membership degree” of s with 
respect to max{ms}. 
      Assume further that one wants to study the 
combined results of behaviour of k different groups 
of a system’s entities, k≥ 2, during the same process.  
For this we introduce the fuzzy variables A1(t), A2(t) 
and A3(t) with t=1, 2,…, k. The values of these 
variables represent fuzzy subsets of U corresponding 
to the stages of the process for each of the k groups; 
e.g. A1(2) represents the fuzzy subset of U 
corresponding to the first stage of the process for the 
second group (t=2). It becomes evident that, in order 
to measure the degree of evidence of combined 
results of the k groups, it is necessary to define the 
probability p(s) and the possibility r(s) of each profile 
s with respect to the membership degrees of s for all 
groups. For this reason we introduce the 
pseudo-frequencies  

f(s) =∑
=

k

t
s tm

1
)(  

and we define the probability of a profile s by 

p(s) = 
3

( )
( )

s U

f s
f s

∈
∑

.  

We also define the possibility of s by 
r(s) =

)}(max{
)(
sf

sf , 

where max{f(s)} denotes the maximal 
pseudo-frequency.  
Obviously the same method could be applied when 
one wants to study the combined results of behaviour 
of a group during k different situations.  

 
3. Fuzzy measures of a system’s effectiveness 

 
There are natural and human-designed systems. 
Natural systems may not have an apparent objective, 
but their outputs can be interpreted as purposes. On 
the contrary, human-designed systems are made with 
purposes that are achieved by the delivery of outputs. 
Their parts must be related, i.e. they must be designed 
to work as a coherent entity.  
      The most important part of a human-designed 
system’s study is probably the assessment, through 
the model representing it, of its performance. In fact, 
this could help the system’s designer to make all the 
necessary modifications/improvements to the 
system’s structure in order to increase its 
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effectiveness. 
      In this paper we’ll present three fuzzy measures 
of a system’s effectiveness connected to the general 
fuzzy model developed above. The advantages and 
disadvantages of these measures will be also 
discussed and an application for the problem solving 
process will be presented illustrating our results.   
 The amount of information obtained by an action can 
be measured by the reduction of uncertainty resulting 
from this action.  Accordingly a system’s uncertainty 
is connected to its capacity in obtaining relevant 
information. Therefore a measure of uncertainty 
could be adopted as a measure of a system’s 
effectiveness in solving related problems.  
       Within the domain of possibility theory 
uncertainty consists of strife (or discord), which 
expresses conflicts among the various sets of 
alternatives, and non-specificity (or imprecision), 
which indicates that some alternatives are left 
unspecified, i.e. it expresses conflicts among the 
sizes (cardinalities) of the various sets of alternatives 
([6]; p.28).  

      Strife is measured by the function ST(r) on the 
ordered possibility distribution  

r:  r1=1≥  r2 ≥…….≥  rn ≥ rn+1 

of a group of a system’s entities defined by  

ST(r) = ∑
∑=

=

+−
n

i
i

j
j

ii

r

irr
2

1

1 log)([
2log

1
], 

while non-specificity  is measured by  the function 

N(r) = ∑
=

+−
n

i
ii irr

2
1 log)([

2log
1 ]. 

The sum T(r) = ST(r) + N(r) is a measure of the total 
possibilistic uncertainty for ordered possibility 
distributions. The lower is the value of T(r), which 
means greater reduction of the initially existing 
uncertainty, the better the system’s performance.  
Another fuzzy measure for assessing a system’s 
performance is the well known from classical 
probability and information theory Shannon’s 
entropy [15].  For use in a fuzzy environment, this 
measure is expressed in terms of the 
Dempster-Shafer mathematical theory of evidence in 
the form:  

H= - ∑
=

n

s
ss mm

n 1
ln

ln
1

 

([6], p. 20). 
    In the above formula n denotes the total number of 
the system’s entities involved in the corresponding 
process. The sum is divided by ln n (the natural 

logarithm of n) in order to be normalized.  Thus H 
takes values in the real interval [0, 1]. The value of H 
measures the system’s total probabilistic uncertainty 
and the associated to it information. Similarly with 
the total possibilistic uncertainty, the lower is the 
final value of H, the better the system’s performance.  
An advantage of adopting H as a measure instead of 
T(r) is that H is calculated directly from the 
membership degrees of all profiles s without being 
necessary to calculate their probabilities ps. In 
contrast, the calculation of T(r) presupposes the 
calculation of the possibilities rs of all profiles first. 
However, according to Shackle [14] human 
reasoning can be formalized more adequately by 
possibility rather, than by probability theory. But, as 
we have seen in the previous section, the possibility 
is a kind of “relative probability”. In other words, the 
“philosophy” of possibility is not exactly the same 
with that of probability theory. Therefore, on 
comparing the effectiveness of two or more systems 
by these two measures, one may find non compatible 
results in boundary cases, where the systems’ 
performances are almost the same. 
     Another popular approach is the “centroid” 
method, in which the centre of mass of the graph of 
the membership function involved provides an 
alternative measure of the system’s performance.  
For this, given a fuzzy subset 

A = {(x, m(x)): x∈U} 

of the universal set U with membership function  
m: U → [0, 1], we correspond to each x∈U an 
interval of values from a prefixed numerical 
distribution, which actually means that we replace U 
with a set of real intervals. Then, we construct the 
graph F of the membership function y=m(x).  
There is a commonly used in fuzzy logic approach to 
measure performance with the pair of numbers (xc, yc) 
as the coordinates of the centre of mass, say Fc, of the 
graph F, which we can calculate using the following 
well-known  [22] formulas:  

 ,F F
c c

F F

xdxdy ydxdy
x y

dxdy dxdy
= =
∫∫ ∫∫

∫∫ ∫∫
                         .

(1) 

 
For example, assume that the set U of the linguistic 
labels of section 2 characterizes the performance of a 
group of students. When a student obtains a mark, say 
y, then his/her performance is characterized as very 
low (a) if y ∈  [0, 1) , as low (b) if y ∈  [1, 2), as 
intermediate (c) if y∈  [2, 3), as high (d) if  y ∈  [3, 4) 
and as very high (e) if  y ∈  [4,5] respectively. In this 
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case the graph F of the corresponding fuzzy subset of 
U is the bar graph of Figure 2  
 

 

 
 
 
 

 
Figure 2: Bar graphical data representation 

 
 
It is easy to check that, if the bar graph consists of n 
rectangles (in Figure 2 we have n=5), the formulas (1) 
can be reduced to the following formulas: 

2

1 1

1 1

(2 1)
1 1,
2 2

n n

i i
i i

c cn n

i i
i i

i y y
x y

y y

= =

= =

   
−   

   = =
   
   
   

∑ ∑

∑ ∑
 

                                                                               (2) 
Indeed, in this case

F

dxdy∫∫ is the total mass of the 

system which is equal to 
1

n

i
i

y
=
∑ , 

F

xdxdy∫∫ is the 

moment about the y-axis which is equal to 

          
1 1 0 1

i

i

y in n

i iF i

xdxdy dy xdx
= = −

=∑ ∑∫∫ ∫ ∫  

          
1 1

in

i
i i

y xdx
= −

= =∑ ∫  
1

1 (2 1)
2

n

i
i

i y
=

−∑ ,  

and 
F

ydxdy∫∫ is the moment about the y-axis which is 

equal to  

         
1 1 0 1

i

i

y in n

i iF i

ydxdy ydy dx
= = −

=∑ ∑∫∫ ∫ ∫ =       

1 1 0 1

i

i

y in n

i iF i

xdxdy dy xdx
= = −

=∑ ∑∫∫ ∫ ∫ = 2

1 10

1
2

iyn n

i
i i

ydy y
= =

=∑ ∑∫ . 

From the above argument, where Fi, i=1,2,…,n , 
denote the n rectangles of the bar graph, it becomes 
evident that the transition from (1) to (2) is obtained 
under the assumption that all the intervals have 
length equal to 1 and that the first of them is the 
interval [0, 1].  
In our case (n=5) formulas (2) are transformed into 
the following form: 

 

1 2 3 4 5

1 2 3 4 5

2 2 2 2 2
1 2 3 4 5

1 2 3 4 5

3 5 7 91 ,
2

1 .
2

    

c

c

y y y y yx
y y y y y

y y y y yy
y y y y y

 + + + +
=  + + + + 

 + + + +
=  

+ + + +   
Normalizing our fuzzy data by dividing each m(x), 
x∈U, with the sum of all membership degrees we 
can assume without loss of the generality that   

y1+y2+y3+y4+y5 = 1. 

Therefore we can write: 
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( )

( )
1 2 3 4 5

2 2 2 2 2
1 2 3 4 5

1 3 5 7 9 ,
2
1
2

c

c

x y y y y y

y y y y y y

= + + + +

= + + + +
(3)

 

with  yi = 
∑
∈Ux

i

xm
xm

)(
)(

, where x 1 = a, x2 =b, x3= c,  

 
x4 = d and x5 = e. 
 
But  

0≤ (y1-y2)2=y1
2+y2

2-2y1y2, 

therefore  
y1

2+y2
2 ≥ 2y1y2 

with the equality holding if, and only if, y1=y2.   
In the same way one finds that 

 
y1

2+y3
2 ≥ 2y1y3, 

and so on. Hence it is easy to check that  

(y1+y2+y3+y4+y5)2 ≤  5(y1
2+y2

2+y3
2+y4

2+y5
2), 

 
with the equality holding if, and only if 
y1=y2=y3=y4=y5. 
 
But y1+y2+y3+y4+y5 =1,  therefore 
 

1 ≤  5(y1
2+y2

2+y3
2+y4

2+y5
2)       (4), 

with the equality holding if, and only if  
y1=y2=y3=y4=y5=

5
1 . 

Then the first of formulas (3) gives that xc = 
2
5 .  

Further, combining the inequality (4) with the second 
of formulas (3) one finds that 

1≤ 10yc,         or     yc ≥  
10
1 . 

Therefore the unique minimum for yc corresponds to 
the centre of mass Fm (

2
5 ,

10
1 ). 

The ideal case is when y1=y2=y3=y4=0 and y5=1. 
Then from formulas (3) we get that xc = 

2
9   and 

 yc = 
2
1 .Therefore the centre of mass in this case is 

the point Fi (
2
9 , 

2
1 ). 

On the other hand the worst case is when y1=1 and 
y2=y3=y4= y5=0. Then for formulas (3) we find that 
the centre of mass is the point Fw (

2
1 , 

2
1 ). 

Therefore the “area” where the centre of mass Fc   lies 
is represented by the triangle Fw Fm Fi of Figure 3.  

 

Figure 3: Graphical representation of the “area” of the centre of mass 
 

Then from elementary geometric considerations it 
follows that for two groups of a system’s objects with 
the same xc ≥ 2,5 the group having the centre of mass 
which is situated closer to Fi   is the group with the 
higher yc; and for two groups with the same xc <2.5 
the group having the centre of mass which is situated 
farther to Fw is the group with the lower yc. 
Based on the above considerations it is logical to 

formulate our criterion for comparing the groups’ 
performances in the following form: 
 

• Among two or more groups the group with 
the biggest xc   performs better. 

• If two or more groups have the same xc ≥ 2.5, 
then the group with the higher yc performs 
better. 
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• If two or more groups have the same xc < 2.5, 
then the group with the lower yc   performs 
better. 

From the above description it becomes clear that the 
application of the “centroid” method in practice is 
simple and evident and needs no complicated 
calculations in its final step. However, we must 
emphasize that this method treats differently the idea 
of a system’s performance, than the two measures of 
uncertainty presented above do. In fact, the weighted 
average plays the main role in this method, i.e. the 
result of the system’s performance close to its ideal 
performance has much more weight than the one 
close to the lower end.  In other words, while the 
measures of uncertainty are dealing with the average 
system’s performance, the “centroid” method is 
mostly looking at the quality of the performance. 
Consequently, some differences could appear in 
evaluating a system’s performance by these different 
approaches. Therefore, it is argued that a combined 
use of  all these (3 in total) measures could help the 
user in finding the ideal profile of the system’s 
performance according to his/her personal criteria of 
goals.        
  
4. Modelling the process of Problem Solving 

(PS) 
In earlier papers we have developed models similar 
to the general fuzzy model developed above for a 
more effective description of several situations 
involving fuzziness and uncertainty in the areas of 
Education (for the processes of Learning and of 
Mathematical modelling), of Artificial Intelligence 
(for Case-Based and Analogical Reasoning) and of 
Management (for the evaluation of the fuzzy data 
obtained by a market’s research and for Decision 
Making); see for example [30] and its references. 
Notice also, that Subbotin et al., based on our fuzzy 
model for the process of learning [25], have applied 
the “centroid” method on comparing students’ 
mathematical learning abilities [19] and for 
measuring the scaffolding (assistance) effectiveness 
provided by the teacher to students [20]. Also 
Perdikaris has used the total possiblistic uncertainty 
[10] and the Shannon’s entropy [11] for assessing 
students’ geometrical reasoning skills in terms of the 
corresponding van Hieles’ levels. 
     In this paper we shall apply our general fuzzy 
model developed above for representing the Problem 
Solving (PS) process. 
      As the world economy moved from an industrial 
to a knowledge economy, it can be argued that the 
nature of many problems also changed and new 
problems have arisen which may require a different 

approach to overcome them. Educational institutions 
and governments have recognized long ago the 
importance of PS and volumes of research have been 
written about PS (see [3], [9], etc). Universities and 
other higher learning institutions are entrusted with 
the task of producing graduates that have such higher 
order thinking skills among other skills (e.g. see [1], 
etc).  
      Mathematics by its nature is a subject whereby 
PS forms its essence. According to Schoenfeld [17] a 
problem is only a problem (as mathematicians use the 
word) if you don’t know how to go about solving it. 
A problem that has no “surprises” in store, and can be 
solved comfortably by routine or familiar procedures 
(no matter how difficult!) it is an exercise. 
      In an earlier paper [29] we have examined the 
role of problem in learning mathematics and we have 
attempted a review of the evolution of research on PS 
in mathematics education from its emergency as a 
self sufficient science at the end of the 1960’s until 
today. Here is a rough chronology of that progress: 
1950’s – 1960’s:  Polya’s theories on the use of 
heuristic strategies in PS ([12], etc)  
       1970’s:  Emergency of mathematics education as 
a self – sufficient science (research methods were 
almost exclusively statistical). Research on PS was 
mainly based on Polya’s ideas.  
1980’s:  A framework describing the PS process, and 
reasons for success or failure in PS (e.g. [7], [16], 
etc.) 
1990’s: Models of teaching using PS, e.g. 
constructivist view of learning (see [27] and its 
relevant references), Mathematical modelling and 
applications (see [26] and its references), etc. 
2000’s: While early work on PS focused mainly on 
analyzing the PS process and on describing the 
proper heuristic strategies to be used in each of its 
stages, more recent investigations have focused 
mainly on solvers’ behavior and required attributes 
during the PS process; e. g. [2], [18], etc.   
Carlson και Bloom [2] drawing from the large 
amount of literature related to PS developed a broad 
taxonomy to characterize major PS attributes that 
have been identifying as relevant to PS success. This 
taxonomy gave genesis to their “Multidimensional 
Problem-Solving Framework” (MPSF), which 
includes the following 4 phases: Orientation, 
Planning, Executing and Checking.  
It has been observed that once the solvers oriented 
themselves to the problem space, the 
plan-execute-check cycle was usually repeated 
through out the remainder of the solution process; 
only in a few cases a solver obtained linearly the 
solution of a problem (i.e. he/she made this cycle 
only once). Thus embedded in the framework are two 
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cycles (one cycling back and one cycling forward), 
each of which includes the three out of the four 
phases, that is planning, executing and checking. It 
has been also observed that, when contemplating 
various solution approaches during the planning 
phase of the PS process, the solvers were at times 

engaged in a conjecture-imagine-evaluate 
(accept/reject) sub-cycle. Therefore, apart of the two 
main cycles, embedded in the framework is the above 
sub-cycle, which is connected to the phase of 
planning (see Figure 4, taken from [2]).   

 

 
 

Figure 4: A graphical representation of Carlson’s and Bloom’s MPSF 
 

The construction of our fuzzy model for the PS 
process is based on MPSF. For this, we consider a 
group of n solvers, n ≥ 2, working (each one 
individually) on the solution of the same problems. 
We denote by Si , i=1,2,3 the phases of 
orientation/planning, executing and checking. The 
phase of orientation being a preliminary step of the 
PS process can be considered without loss of the 
generality as a sub-phase of planning.  
     To each of the Si’ s we attach a fuzzy subset, say Ai, 
of the set U of the linguistic labels considered in 
section 2 defining also the membership function mAi 
as we did in section 2. The development of the rest of 
our model for PS relies then upon the lines of our 
general fuzzy model presented in detail in sections 2 
and 3.  
In order to illustrate the use of our results in practice, 
we performed the experiments presented in the next 
section. 

5. Applications of the model for PS 
The following two experiments took place recently at 

the Graduate Technological Educational Institute 
(T.E.I.) of Patras in Greece. In the first of them our 
subjects were 35 students of the School of 
Technological Applications, i.e. future engineers, 
and our basic tool was a list of 10 problems (see 
Appendix)  given to students for solution  (time 
allowed 3 hours). Before starting the experiment we 
gave the proper instructions to students emphasizing 
among the others that we are interested for all their 
efforts (successful or not) during the PS process, and 
therefore they must keep records on their papers for 
all of them, at all stages of the PS process. This 
manipulation enabled as in obtaining realistic data 
from our experiment for each stage of the PS process 
and not only those based on students’ final results 
that could be obtained in the usual way of graduating 
their papers.   
    Our characterizations of students’ performance at 
each stage of the PS process involved: 

• Negligible success, if they obtained (at the 
particular stage) positive results for less than 
2 problems. 
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• Low success, if they obtained positive results 
for 2, 3, or 4 problems. 

• Intermediate success, if they obtained 
positive results for 5, 6, or 7 problems. 

• High success, if they obtained positive 
results for 8, or 9 problems. 

• Complete success, if they obtained positive 
results for all problems. 

Examining students’ papers we found that 15, 12 and 
8 students had intermediate, high and complete 
success respectively at stage of planning. Therefore 
we obtained that n1a=n1b=0, n1c=15, n1d=12 and 
n1e=8. Thus, by the definition of )(xm

iA planning 
corresponds to a fuzzy subset of U of the form:  
  

A1 = {(a,0),(b,0),(c, 0,5),(d, 0,25),(e,0,.25)}, 
 
In the same way we represented the stages of 
executing and checking as fuzzy sets in U by  
 

A2 = {(a,0),(b,0),(c, 0,5),(d, 0,25),(e,0)} and 
 

A3 = {(a, 0,25),(b, 0,25),(c, 0,25),(d,0),(e,0)} 
 
respectively. 
Next we calculated the membership degrees of the 53 
(ordered samples with replacement of 3 objects taken 
from 5) in total possible students’ profiles as it is 
described in section 2 (column of ms(1) in Table 1). 
For example, for the profile s=(c, c, a) one finds that 
ms=m

1A (c).m
2A (c).m

3A (a) = 0,5.0,5.0,25) 
=0,06225. 
It is a straightforward process then to calculate in 
terms of the membership degrees the Shannon’s 
entropy for the student group, which is H≈0,289. 
Further, from the values of the column of ms(1) it 
turns out that the maximal membership degree of 
students’ profiles is 0,06225. Therefore the 
possibility of each s in U3 is given by 

 rs=
06225,0

sm
. 

Calculating the possibilities of all profiles (column of 
rs(1) in Table 1) one finds that the ordered possibility 
distribution for the student group is:  
 
r: r1= r2 = 1, r3 = r4 = r5 = r6 = r7 = r8 = 0,5, r9 = r10 = 
r11 = r12 = r13 = r14  = 0,258, r15 = r16 = ……. ........=  
r125 = 0. 
 

Thus with the help of a calculator one finds that  

ST(r)= ∑
∑=

=

+−
14

2

1

1 ]log)([
2log

1
i

i

j
j

ii

r

irr ≈  

1
0,301

[0,5 2 8 14log 0,242log 0,258log ]
2 5 6,548
+ + ≈  

 
3,32 . 0,242 . 0,204 + 0,258 . 0,33≈0.445 and  
 

Ν(r)= ∑
=

+−
n

i
ii irr

2
1 log)([

2log
1 ] 

=
2log

1
(0,5 log 2 0,242log8 0,258log14)+ +  

 
≈  0,5+3.0,242+0,857.1,146≈2,208 .  

Therefore we finally have that T(r)≈2,653. 
A few days later we performed the same experiment 
with a group of 30 students of the School of 
Management and Economics. Working as above we 
found that  

A1={(a, 0),(b, 0,25),(c, 0,5),(d, 0 ,25),(e, 0)}, 
 

A2={(a, 0,25),(b, 0,25),(c, 0,5),(d, 0),(e, 0)} 
 

A3={(a, 0,25),(b, 0,25),(c,0,25),(d, 0),(e, 0)}. 

Then we calculated the membership degrees of all 
possible profiles of the student group (column of ms 
(2) in Table 1) and the Shannon’s entropy, which is 
H≈0,312. 
Since the maximal membership degree is again 
0,06225, the possibility of each s is given by the same 
formula as for the first group. Calculating the 
possibilities of all profiles (column of rs(2) in Table 1) 
one finds that the ordered possibility distribution of 
the second group is: 

r: r1 = r2 = 1, r3 = r4= r5 = r6 = r7 = r8 = 0,5,  r9 = r10 = 
r11= r12 = r13 = 0,258, r14 = r15 =……..= r125 = 0 

Finally, working in the same way as above one finds 
that T(r) = 0,432+2,179 = 2,611. 
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Table 1: Profiles with non zero membership degrees 
(The outcomes of the above Table were obtained with accuracy up to the third decimal point). 
 
A1 A2 A3 ms(1) rs(1) ms(2) rs(2) f(s) r(s) 
b b b 0 0 0.016 0.258 0.016 0.129 
b b a 0 0 0.016 0.258 0.016 0.129 
b a a 0 0 0.016 0.258 0.016 0.129 
c c c 0.062 1 0.062 1 0.124 1 
c c a 0.062 1 0.062 1 0.124 1 
c c b 0 0 0.031 0.5 0.031 0.25 
c a a 0 0 0.031 0.5 0.031 0.25 
c b a 0 0 0.031 0.5 0.031 0.25 
c b b 0 0 0.031 0.5 0.031 0.25 
d d a 0.016 0.258 0 0 0.016 0.129 
d d b 0.016 0.258 0 0 0.016 0.129 
d d c 0.016 0.258 0 0 0.016 0.129 
d a a 0 0 0.016 0.258 0.016 0.129 
d B a 0 0 0.016 0.258 0.016 0.129 
d B b 0 0 0.016 0.258 0.016 0.129 
d C a 0.031 0.5 0.031 0.5 0.062 0.5 
d C b 0.031 0.5 0.031 0.5 0.062 0.5 
d C c 0.031 0.5 0.031 0.5 0.062 0.5 
e C a 0.031 0.5 0 0 0.031 0.25 
e C b 0.031 0.5 0 0 0.031 0.25 
e C c 0.031 0.5 0 0 0.031 0.25 
e d a 0.016 0.258 0 0 0.016 0.129 
e d b 0.016 0.258 0 0 0.016 0.129 
e d c 0.016 0.258 0 0 0.016 0.129 

 
Therefore, since 2,611<2,653, it turns out that the second 
group had in general a slightly better performance than the 
first one. Notice that the values of the Shannon’s entropy 
lead to the opposite conclusion (since 0,312>0,289), but 
this, as we have already explained in section 2, is not 
surprising in cases, where the difference between the 
performances of the two groups is very small. Further, 
using formulas (3) of section 3, one can compare the 
performances of the two groups by the “centroid” method 
in each of the listed above phases of the PS process as 
follows:  
Denote by Aij the fuzzy subset of U attached to the phase 
Sj , j=1,2,3 , of the PS process  with respect to the student 
group i,  i=1,2. 
 In the first phase of orientation/planning we have  

A11 = {(a, 0),(b, 0),(c, 0,5),(d, 0,25),(e, 0,25) 
 

A21= {(a, 0),(b, 0,25),(c, 0,5),(d , 0,25),(e, 0)} 

and respectively 

xc11 = 
2
1 (5.0,5+7.0,25+9.0,25) = 3,25 

xc21 = 
2
1 (3.0,25+5.0,5+7.0,25) = 2,25 . 

By our criterion the first group demonstrates better  
performance. 
At the second stage of solution we have:  

 

 
A12 = {(a, 0),(b, 0),(c, 0,5),(d, 0,25),(e, 0)}, 

 
A22={(a, 0,25),(b, 0,25),(c, 0,5),(d, 0),(e, 0)}. 
 
Normalizing the membership degrees in the first 
of the above fuzzy subsets of U (0,5 : 0,75 ≈  0,67  
and  0,25 : 0,75 ≈  0,33) we get  

 
A12 = {(a, 0),(b, 0),(c, 0,67),(d, 0,33),(e, 0)}, 

 
A22={(a, 0,25),(b, 0,25),(c, 0,5),(d, 0),(e, 0)} 
 
and respectively 

xc12 = 
2
1 (5.0,67+7.0,33) = 5,66 

xc22 = 
2
1 (0,25+3.0,25+5.0,25) = 3,25 . 

By our criterion the first group demonstrates 
again a significantly better performance. 
Finally, at the third phase of checking we have 

 
A13= A23 =  
{(a, 0,25),(b, 0,25),(c, 0,25),(d, 0),(e, 0)}, 

 
which obviously means that in this phase the 
performances of both groups are identical. Based 
on our calculations we can conclude that the first 
group demonstrated a significantly better  
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performanceat the phases of orientation/planning and of 
executing, but performed identically with the second one 
at the phase of checking.  
 
Remark: In earlier papers we have also developed a 
stochastic model for the representation of the PS process 
by applying a Markov chain on the stages of Schoenfeld’s   
“Expert Performance Model for PS” ([23], [24]). There 
are many similarities between Carlson’s and Blum’s 
MPSF [2] and Schoenfeld’s model [16]. However, their 
main qualitative difference is that, while in the former 
case emphasis is given to the solver’s behavior and 
required attributes rather, the latter is oriented towards the 
PS process itself (use of the proper heuristic strategies at 
each stage of the process). 
    Our stochastic model for the PS process is self 
restricted to give quantitative information only through 
the description of the ideal behavior of a group of solvers 
(i.e. how they must act for the solution of a problem and 
not how they really act in practice). 
 
6. Discussion and conclusions  
The following conclusions can be drawn from the 
discussion performed in this paper:  
 In studying a system’s operation a model is required 

to describe and represent all its multiple views. An 
essential part of a human-designed system’s study is 
the assessment, through the model, of its 
performance. In fact, this could help the system’s 
designer to make all the necessary 
modifications/improvements to the system’s 
structure in order to increase its effectiveness. 

 In this paper we developed a general fuzzy model for 
representing processes in a system’s operation 
involving vagueness and/or uncertainty. We also 
presented 3 methods of measuring a system’s 
effectiveness connected to the above model. The first 
of them concerns the measurement of the total 
possibilistic uncertainty defined on the system’s 
profiles ordered possibility distribution and being 
equal to the sum of strife and non specificity. The 
second concerns the measurement of the system’s 
probabilistic uncertainty expressed by a modified 
version of the Shannon’s entropy for use in a fuzzy 
environment. Finally, the third one is the, so called, 
“centroid” method, in which the coordinates of the 
center of mass of the graph of the membership 
function involved provide an alternative measure of 
the system’s performance. Each one of the above 
methods adheres its own advantages and 
disadvantages and a combined use of them could 
help the user in finding the ideal profile of the 
system’s performance according to his/her personal 
criteria of goals. 

 In earlier papers we have applied similar 
fuzzy models for a more effective 
description of several processes in the areas 
of Education, of Artificial Intelligence and 
of Management. In the present paper we 
applied our general fuzzy model for the 
description of the PS process  The 
construction of the fuzzy model for the PS 
process was based on Carlson’s and Blum’s 
“Multidimensional PS Framework” 
(MPSF).  

 Two classroom experiments were also 
presented illustrating the use of our results 
for problem solving and showing the 
usefulness and applicability of our model in 
practice. 

 In contrast to our stochastic (Markov chain) 
model for the PS process developed in 
earlier papers, which is restricted to give 
quantitative information only, our fuzzy 
model has the advantage of giving also a 
qualitative/realistic view of the PS process 
through the calculation of the probabilities 
and/or possibilities of all possible solvers’ 
profiles. Nevertheless, the characterization 
of the problem solvers’ performance in 
terms of a set of linguistic labels, which are 
fuzzy themselves, is a disadvantage of the 
fuzzy model, because this characterization 
depends on the user’s personal criteria. A 
“live” example about this is the different 
evaluations for the two groups of solvers 
obtained by using our fuzzy measures for the 
PS skills in our classroom experiments 
presented in section 5. Therefore the 
stochastic could be used as a tool for the 
validation of the fuzzy model in the effort of 
achieving a worthy of credit mathematical 
analysis of the PS process. 

Our plans for future research on the subject 
involve: 
 The attempt to extend our measuring 

method on an individual basis as well 
(not only for groups). 

 The possible extension of our fuzzy 
model for the description of other real 
life situations involving fuzziness and/or 
uncertainty. 

  Further experimental applications of our 
model in order to obtain more creditable 
statistical data.  
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Appendix 
List of the problems given for solution to students in our 
classroom experiment 
 
Problem 1:  We want to construct a channel to run water 
by folding across its longer side the two edges of an 
orthogonal metallic leaf having sides of length 20cm and 
32 cm, in such a way that they will be perpendicular to the 
other parts of the leaf. Assuming that the flow of the water 
is constant, how we can run the maximum possible 
quantity of the water? 

Problem 2: Given the matrix Α=
















100
210
221

 and a 

positive integer n, find the matrix Αn. 

Problem 3: Calculate the integral ∫ +
dx

x
x

42 . 

Problem 4: Let us correspond to each letter the number 
showing its order into the alphabet (A=1, B=2, C=3 etc). 
Let us correspond also to each word consisting of 4 letters 
a 2X2 matrix in the obvious way; e.g. the matrix  









513

1519
 corresponds to the word SOME. Using the 

matrix E= 







711
58

 as an encoding matrix how you could 

send the message LATE in the form of a camouflaged 
matrix to a receiver knowing the above process and how 
the receiver could decode your message? 

Problem 5: The demand function P(Qd)=25-Qd
2 

represents the different prices that consumers 
willing to pay for different quantities Qd of a good. 
On the other hand the supply function   
P(Qs)=2Qs+1 represents the prices at which 
different quantities Qs of the same good will be 
supplied. If  the market’s equilibrium occurs at (Q0, 
P0), the producers who would supply at lower price 
than P0 benefit. Find the total gain to producers’. 
 
Problem 6: A ballot box contains 8 balls numbered 
from 1 to 8. One makes 3 successive drawings of a 
lottery, putting back the corresponding ball to the 
box before the next lottery. Find the probability of 
getting all the balls that he draws out of the box 
different. 
 
Problem 7:  A box contains 3 white, 4 blue and 6 
black balls. If we put out 2 balls, what is the 
probability of choosing 2 balls of the same colour? 
 
Problem 8: The rate of increase of the population of 
a country is analogous to the number of its 
inhabitants. If the population is doubled in 50 years, 
in how many years it will be tripled?  (ANSWER: 

In 50
2ln
3ln 79≈ years).    

 
Problem 9: A company circulates for first time in 
the market a new product, say K. Market’s research 
has shown that the consumers buy on average one 
such product per week, either K, or a competitive 
one. It is also expected that 70% of those who buy K 
they will prefer it again next week, while 20% of 
those who buy another competitive product they 
will turn to K next week 
  .i) Find the market’s share for K two weeks after 
its first circulation, provided that the market’s 
conditions remain unchanged. 
   ii) Find the market’s share for K in the long run, 
i.e. when the consumers’ preferences will be 
stabilized. 
 
Problem 10: Among all cylinders having a total 
surface of 180π m2, which one has the maximal 
volume? 
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